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Let A and B be non-empty subsets of a normed linear space, and f : A � B be a
single valued function. A solution to the functional equation fx=x, (x # A) will
be an element xo in A such that fxo=xo (i.e., such that d( fx, x)=0). In the case
of non-existence of a solution to the equation fx=x, it is natural to explore the
existence of an optimal approximate solution that will fulfill the requirement to
some extent. In other words, an element xo in A should be found in such a way
that d(xo , fxo)=Min[d(x, fx): x # A]. Thus, the crux of finding an optimal
approximate solution to the aforesaid equation fx=x boils down to ascertaining a
solution to the optimization problem Min[d(x, fx): x # A]. But, d(x, fx)�d(A, B)
for all x # A. So, in the case of seeking an optimal approximate solution to the
aforesaid equation fx=x, it should be contemplated to find an element xo in A
such that d(xo , fxo)=d(A, B). Indeed, given a multifunction T: A � 2B with open
fibres, best proximity pair theorems, furnishing the sufficient conditions for the
existence of an element xo # A such that d(xo , Txo)=d(A, B), are proved in this
paper. � 2000 Academic Press

Key Words: best proximity pairs; Kakutani factorizable multifunctions; best
approximant; multifunctions with open fibres.

1. INTRODUCTION

A great number of practical problems are formulated as certain types of
mathematical equations, such as systems of linear or algebraic equations,
ordinary or partial differential equations, or functional equations. So, it is
of common interest to solve an operator equation of the form Sx=0 where
S is defined on some suitable space. The operator equation Sx=0 may be
equivalently expressed as a fixed point equation Tx=x in such a way that
a solution to the equation Tx=x contributes to the one for the corre-
sponding equation Sx=0. Thus, the significance of fixed point theory
stems from the fact that it furnishes an unified approach and constitutes an
important tool in solving equations which are not necessarily linear.
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On the other hand, if the fixed point equation Tx=x does not possess
a solution, it is contemplated to resolve the problem of finding an element
x in the suitable space such that x is in proximity to Tx in some sense. In fact,
the ``Best approximation pair theorems'' and ``Best proximity pair theorems''
are pertinent to be explored in this direction. In the setting of a topological
vector space E with a continuous seminorm p, if T is a mapping with domain
A, then a best approximation theorem provides sufficient conditions that
ascertain the existence of an element xo , known as best approximant, such
that

d(xo , Txo)=d(Txo , A)

where d(X, Y) :=Inf[ p(x& y): x # X and y # Y] for any non-empty subsets
X and Y of the space E. Indeed, a classical best approximation theorem,
due to Ky Fan [3], states that if K is a non-empty compact convex subset
of a Hausdorff locally convex topological vector space E with a continuous
seminorm p and T: K � E is a single valued continuous map, then there
exists an element xo # K such that

p(xo&Txo)=d(Txo , K)

Later, this result has been generalized, by Sehgal and Singh [9], to the one
for continuous multifunctions. It is marked that they have also proved the
following generalization [10] of the result due to Prolla [6].

If K is a non-empty approximately compact convex subset of a normed
linear space X, T : K � X a single valued continuous map with T(K)
relatively compact and g : K � K an affine, continuous and surjective single
valued map such that g&1 sends compact subsets of K onto compact sets,
then there exists an element xo in K such that

d(gxo , Txo)=d(Txo , K).

In the setting of Hausdorff locally convex topological vector spaces, the
authors Vetrivel, Veeramani and Bhattacharyya [12] have established
existential theorems that guarantee the existence of a best approximant
for continuous Kakutani factorizable multifunctions which unify and
generalize the known results on best approximations. Despite the fact that
the existence of an approximate solution is ensured by best approximation
theorems, a natural question that arises in this direction is whether it is
possible to guarantee the existence of an approximate solution that is
optimal. In other words, if A and B are non-empty subsets of a normed
linear space and T: A � B is a mapping, the point to be mooted is whether
one can find an element xo in A such that

d(xo , Txo)=Min[d(x, Tx) : x # A]
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An affirmative answer to this poser is provided by best proximity pair
theorems which are considered in this paper. A best proximity pair theorem
analyzes the conditions under which the optimization problem, namely

min
x # A

d(x, Tx)

has a solution. Indeed, if T is a multifunction from A to B, then

d(x, Tx)�d(A, B)

So, the most optimal solution to the problem of minimizing the real valued
function x � d(x, Tx) over the domain A of the multifunction T will be the
one for which the value d(A, B) is attained. In view of this standpoint, best
proximity theorems are considered in this paper to expound the conditions
that assert the existence of an element xo such that

d(xo , Txo)=d(A, B)

The pair (xo , Txo) is called a best proximity pair of T. If the mapping under
consideration is a self-mapping, it may be observed that a best proximity
pair theorem boils down to a fixed point theorem under certain suitable
conditions. Because of the fact that

d(x, Tx)�d(Tx, A)�d(A, B) for all x # A,

an element xo satisfying the conclusion of a best proximity pair theorem is
a best approximant but the refinement of the closeness between xo and its
image Txo is demanded in the case of best proximity pair theorems. Also,
a best proximity pair theorem sheds light in another direction that it
evolves as a generalization of the problem, considered by Beer and Pai [1],
Sahney and Singh [8], Singer [11] and Xu [13], of exploring the suffi-
cient conditions for the non-emptiness of the set

Prox(A, B) :=[(a, b) # A_B : d(a, b)=d(A, B)]

In [7], best proximity pair theorems have been considered for a class of
upper semicontinuous multifunctions which are not necessarily convex
valued and it has been shown that such theorems subsume the known fixed
point theorems for convex valued upper semicontinuous multifunctions. So,
best proximity theorems will also serve as a natural generalization of fixed
point theorems.

The purpose of the present paper is to elicit best proximity pair theorems
for multifunctions with open fibres.
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2. PRELIMINARIES

This section covers the preliminary notions and the results that will be
required in the sequel to establish the main theorems.

Let X and Y be non-empty sets. The collection of all non-empty subsets
of X is denoted by 2X.

A multifunction or set-valued function from X to Y is defined to be a function
that assigns to each element of X a non-empty subset of Y.

If T is a multifunction from X to Y, then it is designated as T: X � 2Y,
and for every x # X, Tx is called a value of T.

For A�X, the image of A under T, denoted by T(A), is defined as

T(A) := .
x # A

Tx

For B�Y, the preimage or inverse image of B under T, denoted by
T &1(B), is defined as

T &1(B) :=[x # X : Tx & B{,]

If y # Y, then T &1( y) is called a fibre of T.
In what follows, it will be assumed that X and Y are topological spaces.
A multifunction T : X � 2Y is said to be upper semicontinuous if for every

closed subset C of Y, its inverse image T &1(C) is closed in X.
It is known that if T : X � 2Y is an upper semicontinuous multifunction

with compact values, then T(K) is compact in Y whenever K is a compact
subset of X.

A multifunction T: X � 2Y is said to be a compact multifunction if T(X)
is contained in a compact subset of Y.

A single valued function g from a topological space X to another topological
space Y is said to be proper if g&1(K) is compact in X whenever K is compact
in Y. It is remarked that if g is continuous and X is a compact space, then the
map g is proper.

Let E be a normed linear space.
A non-empty subset A of E is said to be approximately compact if for

each y # E and each sequence [xn] in A satisfying the condition that
d(xn , y) � d( y, A), there is a subsequence of [xn] converging to an ele-
ment of A.

If A is a non-empty approximately compact convex subset of E, then the
set PA( y) of all best approximations in A to any element y # A defined by

PA( y) :=[x # A : d( y, x)=d( y, A)]
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is a non-empty convex compact subset of A and the multifunction
y � PA( y) is an upper semicontinuous multifunction on E.

A non-empty subset A of E is aid to be proximinal if for every y # E,
there exists x # E such that d(x, y)=d( y, A), i.e., if PA( y) is non-empty for
every element y # E.

Let C be a non-empty convex subset of E. A single valued function
g: C � E is said to be quasi affine if for every real number r�0 and x # E,
the set [u # C: d[ g(u), x]�r] is convex.

3. MAIN THEOREMS

This section is devoted to principal results on best proximity pairs.
For any two non-empty subsets A and B of a normed linear space, the

following notations are used in the sequel.

d(A, B) :=Inf[d(a, b): a # A and b # B]

Prox(A, B) :=[(a, b) # A_B : d(a, b)=d(a, B)]

Ao :=[a # A : d(a, b)=d(A, B) for some b # B]

Bo :=[b # B : d(a, b)=d(A, B) for some a # A]

If one of the sets A and B is a singleton, say A=[x], then d(A, B) is
simply written as d(x, B). Also, if A=[x] and B=[ y], then d(x, y) is
indicated sometimes to denote d(A, B) which is precisely &x& y&.

Proposition 3.1. If A and B are non-empty subsets of a normed linear
space E such that d(A, B)>0, then Ao �Bd(A) and Bo �Bd(B) where
Bd(X) denotes the boundary of X for any X�E.

Proof. Let x be an arbitrary element of Ao . Then, there exists y # B
such that d(x, y)=d(A, B). Since d(A, B)>0, A and B are disjoint. Let
K :=[(1&*) x+*y : 0�*�1]. Because the convex set K intersects both
A and its complement E&A, it must intersect the boundary of A. So, there
exists *o # [0, 1) such that z :=(1&*o) x+*o y # Bd(A). To show that x
lies in the boundary of A, it suffices to prove that *o vanishes.

If *o>0, then d(z, y)=(1&*o) d(x, y)

=(1&*o) d(A, B)

<d(A, B), which is a contradiction.

So, x is in the boundary of A. Hence, Ao �Bd(A). Similarly, it may be
proved that Bo is contained in the boundary of B. K
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This section deals with best proximity pair theorems for multifunctions
with open fibres. In the main theorem of this section, the underlying multi-
function is required to satisfy the following condition.

``For every open set U in the domain space of the multifunction T under
consideration, & [Tx: x # U] is convex.''

It may be noted that this condition is fulfilled in the following two cases:

(i) T is convex valued

(ii) Tx & Ty is convex whenever x and y are distinct elements

(A particular situation of case (ii) is that the images of distinct elements
under T are disjoint subsets.)

The following example exhibits that this requirement is weaker than that
of convexity of all values of the multifunction T. Also, this example does
not fall under case (ii).

For x # (0, 1), let Ax :=[0, x] _ (Q & (x, 1])

Bx :=[0, x] _ ((R&Q) & (x, 1])

where R is the set of all real numbers and Q is the set of all rational
numbers.

Let T: [0, 1] � 2[0, 1] be defined as follows:

T(x)={Ax

Bx

if x # (0, 1) and rational
if x # (0, 1) and irrational

T(0)=Q & (0, 1) and T(1)=[0, 1]. Then, for a, b # (0, 1) with a<b, the
following facts may be verified easily.

If U1=[0, a), then & [Tx: x # U1]=,
If U2=(a, b), then & [Tx: x # U2]=[0, a]

If U3=(b, 1], then & [Tx: x # U3]=[0, b]

Since any set U�K which is relatively open in K can be expressed as a
union of sets of the form U1 , U2 and U3 , it follows that & [Tx: x # U] is
convex. This proves the claim.

The following notations will be used in the sequel.

In :=[0, 1, 2, ..., n]

2n :=Co[e0 , e1 , e2 , ..., en] where [e0 , e1 , e2 , ..., en]

is the canonical basis of Rn+1

2(I ) :=Co[ei : i # I] for any non-empty subset I of In .
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An important tool in the proof of the main theorem of this section is the
following theorem due to Horvath [4].

Theorem A (Horvath [4]). Let X be a topological space and G: 2In �
2X be a multifunction such that for each I # 2In, G(I ) is a contractible subset
of X and G(I )�G(I$) whenever I, I$ # 2In and I�I$. Then there exists a
single valued continuous function g: 2n � X such that g[2(I )]�G(I ) for all
I # 2In.

The proof of the principal theorem of this section invokes a fixed point
theorem, due to Lassonde [5], for Kakutani factorizable multifunctions.
Before stating it, the following notions are recalled.

A multifunction T: X � 2Y from a topological space X to another topological
space Y is said to be a Kakutani multifunction [5] if the following conditions
are satisfied.

(a) T is upper semicontinuous.

(b) Either Tx is a singleton for each x # X (in which case Y is
required to be a Hausdorff topological vector space) or for each x # X, Tx
is a non-empty, compact and convex subset of Y (in which case Y is
required to be a convex subset of a Hausdorff topological vector space).

The collection of all Kakutani multifunctions from X to Y is denoted by
K(X, Y).

A multifunction T: X � 2Y from a topological space X to another
topological space Y is said to be a Kakutani factorizable multifunction [5]
if it can be expressed as a composition of finitely many Kakutani multi-
functions.

The collection of all Kakutani factorizable multifunctions from X to Y is
denoted by KC (X, Y).

If T=T1T2 } } } Tn is a Kakutani factorizable multifunction then the
functions T1 , T2 , ..., Tn are known as the factors of T.

It may be noted that a Kakutani factorizable multifunction need not be
convex valued even though each of its factors is convex valued.

Besides Theorem A, the following fixed point theorem, due to Lassonde
[5], for Kakutani factorizable multifunctions will also be invoked to estab-
lish the principal best proximity pair theorem for multifunctions with open
fibres.

Theorem B (Lassonde [5]). If S is a non-empty convex subset of a
Hausdorff locally convex topological vector space, then any compact
Kakutani factorizable multifunction T: S � 2S (i.e., any compact multi-
function in the family KC (S, S)) has a fixed point.
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The main best proximity pair theorem is the following.

Theorem 3.2. Let E be a normed linear space. Let A be a non-empty,
approximately compact and convex subset of E and B be a non-empty, closed
and convex subset of E such that Prox(A, B) is non-empty and Ao is
compact. Suppose that

(a) T: A � 2B is a multifunction such that for every x # Ao , Tx
intersects Bo , and for every y # Bo , the fibre T &1( y) is open.

(b) For every open set U in A, the set & [Tu: u # U] in convex.

(c) g: A � A is a continuous, proper, quasi affine and surjective single
valued map such that g&1(Ao)�Ao .

Then, there exists an element xo # Ao such that

d(Txo , gxo)=d(A, B)

Proof. As [T &1( y): y # Bo] is an open cover for the compact set Ao ,
there exists a finite subset [ y0 , y1 , y2 , ..., yn] of Bo such that

Ao � _ [T &1( yi): i=0, 1, 2, ..., n].

Let S: 2In � P(Ao) (Here P(Ao) denotes the set of all subsets of Ao) and
F : 2In � 2Bo be defined as follows:

For all I # 2In,

S(I )= & [T &1( y i): i # I]

F(I )={& [T(x) & Bo : x # S(I )]
B0

if S(I ){,
otherwise

Evidently, if x # & [T &1( y i): i # I], then y i # Tx for all i # I. So, F(I ) is
non-empty, and it is convex by (b). Further, it is easy to see that
F(I )�F(I$) whenever I, I$ # 2In and I�I$.

By Theorem A, there exists a single valued continuous function f : 2n � Bo

such that f [2(I )]�F(I ) for all I # 2In. Let [h0 , h1 , ..., hn] be a partition of
unity on the compact set Ao subordinate to the open covering
[T &1( y i): i=0 to n].

Let h: Ao � 2n be defined by

h(x)=(ho(x), h1(x), h2(x), ..., hn(x)) for all x # A0 .

Then, h is continuous. Let G= g&1PA : Bo � Ao . It shall be proved that G
is a Kakutani multifunction.
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Since g is quasi affine, G is a convex valued multifunction. In fact, if x1 ,
x2 # Gx, then it yields that

d[ g(x1), x]=d(x, A)=d[ g(x2), x].

But, the quasi affinity of g implies that [u # A : d[ g(u), x]�d(x, A)] is
convex. So, it follows that

d(g[*x1+(1&*) x2], x)=d(x, A)

Therefore, Gx is convex.
It is asserted that G is an upper semicontinuous multifunction. Let C be

any closed subset of Ao and [xn] be any sequence in G&1(C) such that
xn � x. Then, it follows that, for each n, G(xn) & C is non-empty. Choose
an element yn in G(xn) & C so that d(g( yn), xn)=d(xn , A). Since
yn # G(xn)�C, which is a compact set, [ yn] has a convergent subsequence.
Without loss of generality it may be assumed that [ yn] � y # C.

Now, d[ g( y), x]�d[ g( y), g( yn)]+d[ g( yn), xn]+d(xn , x)

=d[ g( y), g( yn)]+d(xn , A)+d(xn , x)

Since g is a continuous function,

d[ g( yn), g( y)] � 0.

Also, d(xn , A) � d(x, A). So, d[ g( y), x]=d(x, A) and hence g( y) # PA(x).
Therefore, y # G(x) & C. This ensures that x # G&1(C). So, G&1(C) is closed
and hence G is upper semicontinuous.

Moreover, Gx is compact as g is a proper single valued map and PA(x)
is compact. Also, G is a compact multifunction because both g&1 and PA

send compact sets onto compact sets.
Applying Theorem B to the Kakutani factorizable multifunction hGf :

2n � 2n , there exists an element so # 2n such that so # hGf (so). So,
so # h(xo) where xo # Ao and g(xo) # PA fso . But, h(xo) # 2[I(xo)] where
I(xo) is the set of all indices i such that hi does not vanish ast xo . Therefore,
it follows that

( fh)(xo) # f [2(I(xo))]�F[I(xo)]�T(xo)

Hence, f (so)=( fh)(xo) # T(xo).
As gxo # PA fso , d(gxo , fso)=d(A, fso)
So, d(gxo , Txo)�d(gxo , fso)=d(A, fso)
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But, since fso # Bo , d(A, fso)=d(A, B)
So, d(gxo , Txo)�d(A, B)
Also, it is evident that d(A, B)�d(gxo , Txo).
Thus, d(gxo , Txo)=d(A, B). This completes the proof of the theorem. K

The following example illustrates the preceding theorem.

Example 3.3. Let E=R2 with the Euclidean norm.
Let A :=[(x, 0): 0�x�1] and B :=[(x, y): y�1 and x�(1�2)]

Then, Ao =[(x, 0): (1�2)�x�1]

Bo=[(x, 1): (1�2)�x�1]

Let T: A � 2B be defined as follows.

{\1
2

, 1+= if x=0

T(x, 0)={{\1
2

, 1+ , \1
2

, 1+
1
2n+= if x=

1
2n (n=1, 2, 3, ...)

{(x, 1) : x�
1
2= otherwise

Let g: A � A be defined as

g(x, y)=(x2, 0)

It is easy to verify that all the conditions of the theorem are satisfied and
d(g(x, 0), T(x, 0))=1=d(A, B) for all x�1�- 2.

If T is convex valued, the preceding theorem yields the following result.

Corollary 3.4. Let E be a normed linear space. Let A be a non-empty,
approximately compact and convex subset of E and B be a non-empty, closed
and convex subset of E such that Prox(A, B) is non-empty and Ao is
compact. Suppose that T: A � 2B is a convex valued multifunction with open
fibres such that T(Ao)�Bo . Then, there exists an element xo # Ao such that

d(Txo , xo)=d(A, B)

Since the non-emptiness of Prox(A, B) is guaranteed by the compactness
of A and the proximinality of B, the following result is a consequence of
Corollary 3.4.
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Corollary 3.5. Let E be a normed linear space. Let A be a non-empty
compact convex subset of E and B be a non-empty, closed, convex and
proximinal subset of E. If T: A � 2B is a convex valued multifunction with
open fibres such that T(Ao)�Bo , then there exists an element xo # Ao such
that d(Txo , xo)=d(A, B).

The preceding result includes the following special case of a fixed point
theorem due to Browder [2].

Corollary 3.6. Let E be a normed linear space and A be a non-empty
compact convex subset of E. If T: A � 2A is a convex valued multifunction
with open fibres, then there exists xo # A such that xo # Txo .
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